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Critical and excess current through an open quantum dot:
Temperature and magnetic-field dependence
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We present measurements of temperature and magnetic-field dependence of the critical current and excess
current in a carbon nanotube Josephson quantum dot junction. The junction is fabricated in a controlled
environment which allows for extraction of the full critical current. The measurements are performed in the
open quantum dot regime and fitted to theory with good qualitative agreement. We also show how to extract
level spacing, level broadening, and charging energy of an open quantum dot from a bias spectroscopy plot.
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I. INTRODUCTION

Nanoscale Josephson quantum dot junctions are intriguing
devices showing several interesting physical phenomena. Su-
percurrent, Andreev reflections, quasiparticle transport, and
excess current have all been studied in junctions where a
nanotube,!® nanowire,'® or InAs island! constitute the
quantum dot. Furthermore, the interplay between these
Josephson-junction related phenomena and correlations as
the Kondo effect'>!7 and the 0-r transition for more weakly
coupled junctions has been explored.>!%1°

In this paper, we present experimental results in the
strongly coupled regime for a Josephson quantum dot junc-
tion realized in a carbon nanotube. Inspired by Ref. 20, we
utilize a designed external circuit in order to control the
phase fluctuations which enables us to infer the true magni-
tude of the critical current, /-, from the measurable critical
current/switching current, /,,, by a fitting procedure.'8 I,, can
significantly differ from /-~ as demonstrated previously for
nanotube-based Josephson junctions.>®!® Here we analyze
the magnetic-field dependence and temperature dependence
of both the critical current and excess current.

II. DEVICE DESIGN

The devices are fabricated on a degenerately doped sili-
con wafer with a 0.5 um layer of SiO,. Carbon nanotubes
are grown from islands of catalyst material and contacted by
small electrodes of superconducting trilayers of 5 nm Ti, 60
nm Al, and 5 nm Ti. The superconducting electrodes are kept
small to reduce junction capacitance. Each superconducting
electrode is contacted by two normal-metal leads to bonding
pads which enables four-probe measurements. The measure-
ments are performed in a He-*He dilution fridge with a base
electron temperature of 75 mK. Inside the dashed square in
Fig. 1(a) we show a schematic circuit diagram of the on-chip
components of the full Josephson junction. The fabrication is
similar to Ref. 18. The superconductor-nanotube-
superconductor junction is represented by a Josephson ele-
ment (cross), a junction resistor R;, and a junction capacitor
C;. The Josephson element has a current-phase relation,
which we in the fitting procedure (see below) assume to be
I(¢)=I. sin(¢), with ¢ as the phase difference between the
two superconducting and I as the critical current. However,
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the sinusoidal form of this relation is not in general true and
this may cause some inaccuracy in the determination of the
critical current. In Ref. 18, we show that the difference be-
tween the extracted I using either sin(¢) or the correct func-
tional form of the current-phase relation is in fact small and
moreover largest near the O-7 transition relevant only for
closed dots. We therefore expect the simpler relation also to
be a reasonable approximation in the case of open dots
[which allows us to use the Ivanchenko-Zil’berman relation
in Eq. (9)]. At subgap bias voltages, R; accounts for current
due to multiple Andreev reflections and at higher bias volt-
ages it accounts for quasiparticle transport. The capacitance
between the superconducting electrodes (C;~5 fF) and be-
tween bonding pads (C~1 pF) is estimated as a parallel-
plate capacitance through the back gate. We have fabricated
long thin metal leads with a measured resistance of
R~1 kQ between the bonding pads and the superconduct-
ing electrodes which, as will be shown later, is crucial for
increasing the measurable critical current.

III. OPEN QUANTUM DOT

In Fig. 1(b) we show a bias spectroscopy plot of differen-
tial conductance versus source-drain voltage (V) and gate
voltage (V). Regular conductance oscillations in both
source-drain and gate voltages are seen due to tuning of suc-
cessive energy levels in the dot, with a separation (level
spacing) AE, on and off resonances. Bias spectroscopy plots
with the leads in the normal state (B=150 mT) (not shown)
show conductances at the resonances ranging from 2 to
3.5 €?/h. That high conductance is only allowed when the
degeneracy of each energy level is fourfold (spin and orbital)
and when the broadening of each energy level I'=T"(+T,
where the I';/A (I';/#) is the tunnel rate through the source
(drain) barrier, is larger than the Coulomb repulsion energy
for adding an electron to the dot (charging energy)
Uc=e*/C. This regime (AE>T>U,) is often called the
Fabry-Pérot regime®%!72! and the dot is termed as an open
quantum dot. We will now analyze the bias spectrum and
extract energy parameters, tunnel couplings, and capaci-
tances.

From the size of the Fabry-Pérot diamond we have the
following three equations, where we apply the source-drain
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voltage to the source electrode and keep the drain electrode
at ground [see Figs. 1(c)-1(f)],

eAVsdz AE, (1)
G
e oAV, =AE+4UC, (2)
C C
eachvg1 +eESAVm,=AE+NUC, (3)

where e is the electron charge, AV,, AV,;, and AV, deter-
mine the size of the Fabry-Pérot diamond as shown in Fig.
1(c), and C,, C,, C,, and C are the capacitance of the dot to
gate, source, drain, and the total capacitance. N is the equi-
librium number of electrons added to the dot from a zero-
bias resonance to the first positive-bias resonance, i.e., from
position d to e in Fig. 1. N can be given in terms of the tunnel
barrier asymmetry (a=I"y/T",):

N=4—2=—— (4)

where « can be found from the conductance at resonance:
Go=16a/(a+1)%¢*/h. For the resonance indicated with an
arrow in Fig. 1(b) we find Gy,~2.6¢*/h, a~0.3, and N
~3.1.

From the width (full width at half maximum) at reso-
nances in gate (W,) and bias (W,,) [see Fig. 1(c)] we can set
up the following two equations:
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FIG. 1. (Color online) (a) Inside the dashed
square: schematic circuit of on-chip components
of the Josephson junction. Outside dashed square:
four-probe voltage bias setup for ensuring junc-
tion voltage V; vs current /. The full Josephson
junction consists of both the superconductor-
nanotube-superconductor junction, represented
by a Josephson element /- in parallel with a junc-
tion capacitor C;, junction resistor R, on-chip re-

-18 sistors R, and capacitances C. (b) Bias spectros-
d1/dv copy plot of differential conductance versus
:',’ [e2/h] source-drain and gate voltage. (c) Schematic of a
Fabry-Pérot diamond. [(d)—(f)] Schematic trans-
O) port diagrams at zero-bias resonance, positive-
bias resonance, and negative-bias resonance.
A —
4-N_Rv

c
e—C&’Wg=F+N'UC, (5)

eWSd =~ 2I . (6)

where the second equation is a good approximation when the
asymmetry of the capacitive or tunnel coupling is not too
large (see the Appendix). N’ is the number of electrons
added to the dot between V== W,/2 from resonance. We
estimate N’ by integrating a Lorentzian density of state for
each energy level on the dot:

1
W,/2 4 EWg
N'= J > =

: 1
W20 T (e jAV) + (Ewg

>2d€, (7)

where the sum should include an appropriate number of en-
ergy levels. If only one energy level is included
(j=0)N' =2 but for increasing number energy levels included
N’ saturates at a higher number (since the tails of the other
levels contribute). For the device analyzed in paper it satu-
rates at N' ~2.5.

By solving the equations above we can find expressions
for the following parameters:

AE=eAV,;~9 meV,

U WAE - 3eAV Wy,
T N'AV,-4w,

~0.5 meV,
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AE e
C,=|\—+4)|— ~4.3 aF,

s \ue Ay,

eC, AV — (4 - N)é?
AE

C,= ~ 152 aF,

62
Cyj=——C,—C,~ 158 aF,
U, 8
c

C=Cy+Cy+C,~ 315 aF,

W,
I=—%%~43 mevV,
2
FS=FL~1 meV,
a+1

1
Iy=F——~33 meV, (8)
a+1

We have on the right-hand column estimated the parameters
for the device analyzed in this paper.?’> Note that
AE>T>U>A,, where Aj~0.11 meV is the supercon-
ducting energy gap (see below).

IV. JOSEPHSON JUNCTION

We now return to the measurements shown in Fig. 1(b),
where two parallel conductance ridges are observed at low
bias due to the density of states in the superconducting elec-
trodes. The separation between these two rides is 4Ay/e,
yielding Ay~ 0.11 meV. In the following we focus on mea-
surements performed on and off zero-bias resonance at the
two indicated positions in Fig. 1(b). Current versus junction
voltage (IV, curves) off resonance for large scale voltages is
shown in Fig. 2(a), where the black curve is with supercon-
ducting electrodes and the red curve is with a small magnetic
field (150 mT) to suppress the superconductivity. At high
bias V,;>2A,/e transport is governed by quasiparticle trans-
port and one Andreev reflection processes yielding an excess
current, while at subgap bias V,;<<2A,/e transport are gov-
erned by Andreev reflections and supercurrent.® A closeup at
very low bias voltages, shown in Fig. 2(b), reveals a pro-
nounced supercurrent branch with finite resistance, a so-
called diffusive supercurrent branch.'® The black circles are
measured with a voltage bias setup as shown in Fig. 1(a),
while the green triangles are measured with a current bias
setup (sweeping from negative to positive current). For volt-
age bias measurements we have observed no hysteresis or
switching in the IV, curves at any gate voltages. But for
current bias measurements switching and hysteresis are ob-
served whenever the full /V; curve has local minima and
maxima, as observed in Fig. 2(b). Such local minima and
maxima will for current bias measurements lead to switching
in voltage and result in a hysteretic /V; curve. To resolve the
full 1V, curve we have therefore used voltage bias measure-
ments in this paper.
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FIG. 2. (Color online) Current versus junction voltage [(a) and
(b)] on and [(c) and (d)] off resonances at positions indicated in Fig.
1(b). (a) Black curve is with the electrodes in the superconducting
state and red curve is with a small magnetic field (150 mT) applied
to suppress the superconductivity. (b) Close up of the supercurrent
branch from (a), measured with a voltage bias setup (circles) and a
current bias setup (triangles). [(c) and (d)] Dependence of the dif-
fusive supercurrent branch on (c) temperature and (d) magnetic
field.

In Figs. 2(c) and 2(d) we show the temperature and
magnetic-field dependence of the diffusive supercurrent
branch, which we will analyze in the following. The zero-
bias slope of the diffusive supercurrent branch in Fig. 2
yields a resistance on the order of kilohms. For a Josephson
quantum dot junction with only two channels as for a nano-
tube the Josephson energy E;=#l-/2e can be comparable to
the temperature of the cryostat. Thermal fluctuations will
therefore lead to fluctuations in the phase difference across
the junction and consequently give a supercurrent branch
with finite resistance. In order to dampen these phase fluc-
tuations and thereby increase the size of the supercurrent
branch, we have designed the environment of the
superconductor-nanotube-superconductor junction as de-
scribed in Ref. 18. The quality factor for the junction is
0<0.5, i.e., strongly damped. The full /V; curve for a
damped Josephson junction including the external compo-
nents (without R;) was calculated by Ivanchenko and
Zil’berman?® and used with great success by Steinbach et
al.?® Since this device has considerable current contribution
from multiple Andreev reflections at subgap bias voltage we
have a rough approximation included a constant resistor R;.
The full 1V, curve can then be calculated as'®

I EJksT)\ V
(V) =1 Im(l_vw) Y ©)
L (EjksT) | T R,

where I,(x) is the modified Bessel function of complex order
and 5=(hV,)/(2eRkgT). To plot I(V,) versus V; instead of
V.q we can use that V;=V,;—RI(V,;). There are two fitting
parameters in this theory, the temperature dependent critical
current I~(7T) and R;. In Fig. 3 we show three I versus V;
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FIG. 3. (Color online) Current versus junction voltage on reso-
nance at position indicated in Fig. 1(b) for three different tempera-
tures. From left to right: 75, 150, and 300 mK. Four-probe voltage
bias measurement (circles) and fit (solid red line) using Eq. (9) with
R;=7.7 kQ and R=1 k(), the temperature at which the curve is
measured, and /-=4.8, 4.8, and 4.6 nA from left to right.

curves measured at the same gate voltage for increasing tem-
peratures (from left to right: 75, 150, and 300 mK). The
black circles are the measurement and the solid red curve is
the theoretical fit with Eq. (9). The three fits are made with
R;=7.7 k€, and the temperature at which it is measured, the
only free fitting parameter is I-(7) yielding 4.8, 4.8, and 4.6
nA, respectively. Equation (9) fits the measured IV, curves
very well for all temperatures with /- as the only fitting
parameter. Above ~300 mK smaller and smaller critical
currents are needed to make a good fit. Critical currents ver-
sus temperature found by these fits are plotted in Fig. 4(a). At
temperatures lower than ~300 mK the critical current is
saturated at ~5 nA, while at higher temperatures it de-
creases more rapidly than a BCS-gap dependence. In Fig.
4(a) we also plot the excess current versus temperature, mea-
sured at V;=4Aq/e. We compare the measurement with
theory for a superconducting quantum point contact.%!7-24-26
We use Egs. 1 and 2 in Ref. 6 with A=A(7T) having a BCS-
temperature dependence to fit the measured temperature de-
pendence of the critical and excess current, solid red and
blue curves in Fig. 4(a). The magnitudes of the measured
critical and excess currents are 0.25 and 0.7 lower than the
theory predicts, while their qualitative dependence on tem-
perature fits well with theory.

In Fig. 4(b) we plot the magnetic-field dependence of the
critical current on and off resonance [see arrows in Fig. 1(b)]
and excess current on resonance. The critical currents are
found by the same method as above by fitting Eq. (9) to each
measured IV, curve in Fig. 2(d). We compare the
measurement to the same theory as above but with
A=A(B)=(1-B/B¢)Ay, where B-~90 mT is the critical
field. We use a linear dependence because, as shown in the
insert of Fig. 4(b), the subgap structure has approximately a
linear dependence on magnetic field. The theory seems to fit
qualitatively well to the measurement. But the magnitudes of
the measured critical and excess currents are, as above for
the temperature dependence, 0.25 and 0.7 lower than theory.
Similar low values of critical*!'7?” and excess currents® have
recently been reported by several independent studies in the
open quantum dot regime. In Ref. 4 the maximum critical
current on resonance is slightly higher than reported above (7
versus 6 nA) consistent with a more symmetric coupling to
the source and drain electrodes (higher on resonance conduc-
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FIG. 4. (Color online) (a) Temperature dependence of the mea-
sured critical current (squares) and excess current (diamonds) on
resonance. (b) Magnetic-field dependence of the measured critical
current on and off resonance (squares and circles) and excess cur-
rent on resonance (diamonds). The normal-state zero-bias conduc-
tance is 2.6e%/h on resonance and 1.4¢2/h off resonance. The solid
lines in both (a) and (b) are the predicted curves for a supercon-
ducting quantum point contact multiplied by a constant factor of
0.25 for the critical current and 0.7 for the excess current. Insert
shows the magnetic-field dependence of the subgap structure of a
similar device in the Coulomb-blockade regime.

tance). The measurable critical current is almost identical to
the critical current in their device, probably due to good fil-
tering, in contrast to the lower value observed in our case.
Most importantly, the overall magnitude of the critical cur-
rent in both studies are suppressed compared to the values
predicted by noninteracting theory.?®

V. CONCLUSION

In conclusion, we have studied the critical and excess
current in a Josephson quantum dot junction realized in a
carbon nanotube device. Using a fit to a model describing
resonance tunneling through a set of resonances, we have
extracted the device parameters. The parameters are consis-
tent with the dot being in the open regime with tunneling
coupling I'~4 meV and charging energy U-~0.5 meV so
that I'>U,. The deduced charging energy is thus several
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times larger than the superconducting energy gap
(Ap=0.11 meV). We speculate that the observed discrepancy
by a factor of 0.25 between the measured critical current and
theoretically expected could be due to the charging energy
being larger than the superconducting gap, giving rise to sup-
pressed Cooper pair transport. Furthermore, the 0.7 discrep-
ancy for the excess current has been observed before® and we
have no good understanding of this but again the Coulomb
interaction might play a role. Further theoretical understand-
ing of this regime is therefore called for.

APPENDIX: MEAN-FIELD DESCRIPTION OF FABRY-
PEROT RESONANCES IN A NANOTUBE
QUANTUM DOT

The electronic states in the nanotube can be described by

1 -~ _
H, = > AEn,,,, + EUCNZ — VN, (A1)
mno
VeCs
Ver= > C (A2)
B=g.s.d
where
N=2 fypy Uc= e—z, (A3)
mno C

and AE is the level spacing. The quantum numbers m, o, and
n describe the orbital, spin, and pseudospin degrees of free-
dom, respectively. The subscripts g, s, and d refer to gate,
source, and drain. In the experiment we apply asymmetric
bias, i.e., V=V, and V;=0. In the mean-field approximation
(which is valid when I'> U), the Hamiltonian is

cnt E AEnmr]a' + UCN<N> - eVeffN

mno

(A4)

where the total occupation (ﬁ) should be determined self-
consistently

(N =2 (s (AS)
mno
with
Iy
()= 22 T —nF(w+eV )Ane(@).  (A6)
a=s,d

Assuming all levels to be simple Lorentzians with equal
widths, the spectral functions are

r
(0= mAE — ULN) + Vo) + (T/2)>
(A7)

Am 770'( w) =

Inserting this into the integral, summing over quantum num-
bers, and setting 7=0 then gives the self-consistency equa-
tion
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FIG. 5. (Color online) (a) Differential conductance versus bias
and gate voltages using Egs. (A8) and (A9). [(b) and (c)] Differen-
tial conductance versus gate voltage at V,=0 mV and versus bias
voltage at resonance (c). Red squares are experimental data (mea-
sured with B=150 mT), solid black line is a Lorentzian fit to the
measurement yielding W,=0.4 V and W,=85 mV, and blue
circles are numerical theory extracted from (a).

W= > N

1‘[ 4
———an
m a=s.d F 2 m

X(mAE+ €Va+ Uc<[\7>—€veff):|. (AS)
rr2

This equation can be solved numerically. Once we know the
total occupation for the given gate, source, and drain volt-
ages, the current is given by

e f (@ + eVy) = np(w+ eV Ay ()

mno

4€4F Fdz (mAE+€Vd+ Uc<ﬁ>—eveff)
“hoal rr2

m

_tan_l<mAE+€VS+ Uc<N>—€Veff>:|. (A9)
rn2

In Fig. 5(a) we plot the differential conductance versus bias
and gate voltage using Egs. (A8) and (A9) with the param-
eters found in Eq. (8). We compare the theory with experi-
mental data measured with=150 mT in Figs. 5(b) and 5(c).
In (b) we make a gate trace at zero bias and in (c) we make
a bias trace at the resonance indicated in Fig. 1(a).
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